Safety analysis and verification/validation of
MachIne LEarning-based systems

Cristofer Englund
Research manager Cooperative systems, RISE Viktoria

Adjunct senior lecturer, Halmstad University

RISE Research Institutes of Sweden

RISE ICT, Viktoria




Machine Learning in vehicles

= Why machine learning is necessary to enable autonomous driving
= Traditional, rule-based, methods are static
= Neural networks have the ability to generalize

= Trends that make Machine Learning possible in vehicles
= Deep learning improves performance compared to traditional neural networks

= Computational power for training and executing deep learning networks
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Machine Learning — Neural Networks

= Neural Networks learns the desired behaviour from historical data

= We want the networks to generalize

= The network should be able to take decisions on previously unknown data — if it is similar to the
training data

= How do we avoid taking decisions on data that is not similar to training data?
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Why deep technologies?

advantage of depth may grow exponentially

= Deep Learning and deep knowledge
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Existing knowledge

United Airlines’ shares fell 8 percent yesterday,
but rebounded by mid-day today.

Sum-product
network

United Airlines suffer
to mistreatnient

Theorems in Ford’ shares lost 3% because of the bad publicity
(Bengio & Delalleau, ALT 2011;

Delalleau & Bengio NIPS 2011) caused by recent recalls.

New knowledge

United Airlines’ shares fell 8 percent
(possibly) because of the bad publicity

http://www.iro.umontreal.ca/~bengioy/cifar/NCAP2014-
summerschool/slides/Yoshua_Bengio_CIFAR_school_12Aug2014.pdf
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Neural Networks for perception

To define the role of the NN it is important to have clear
understanding about:

= What role should the driver have?
= What role should the system have?

= Operational Design Domain ODD - the specific situations where a
system is designed to operate in, e.g. a motorway or a geographical
area.

= Local perception and awareness is key for AD

Training NN to recognize hazardous situations

Training NN to anticipate unforeseen situations




ML impacts on ISO 26262

= Five areas
= Identifying hazards
Faults and failure modes

The use of training set

Level of ML usage

Required software techniques

= Hazard: "a potential source of harm caused by malfunctioning behaviour of the item where harm
is physically injury or damage to the health of persons”

An Analysis of ISO 26262: Using Machine Learning Safely in Automotive Software. Rick Saly, Rodrigo Queiroz, Kryzsztof Czarnecki. arXiv: 1709.02435v1
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ML impacts on ISO 26262

Identifying hazards
= Automation takes over more and more control.
= Taking over becomes increasingly critical.
= Increased automation can/will create behaviour change in the operator —> reducing their skill level.
- Include harm potentially caused by complex behaviour interaction between human and vehicle.

Faults and failure modes
= Incorrect output for a given input.
- Current recommendations apply.

The use of training set
= Necessary to use ML for perception. A training set is used instead of a specification.
= Data does not contain all possible scenarios.
- Design systems that can cope with an error rate.

Level of ML usage
= End-to-End systems model all functionality and the result is a complex black box system.
- Use ML at the component level.

Required software techniques
= ISO 26262 requires many specific techniques for software development.
= Some apply to ML, some may be adapted but some others assume programming.

- Express requirement in terms of intent and maturity of the techniques rather than their specific details.

An Analysis of ISO 26262: Using Machine Learning Safely in Automotive Software. Rick Saly, Rodrigo Queiroz, Kryzsztof Czarnecki. arXiv: 1709.02435v1
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What is SMILE |l about?

We accept that DNN are black-boxes and that we need to include them in vehicle perception

= Camera-based perception models

= Investigate pre-training
= Humans learn from birth what is “dangerous”
= Can self driving vehicles make use of other contexts? et
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What is SMILE |l about?

Safety Cage to monitor the data presented to the network

SMILE focus initially on
Input data analysis

Safe Track
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Image anomaly detection using convolutional autoencoders
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Work by: Lars Tornberg, VCC
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Data set
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Omniglot data set:

1623 images (105x105)
50 different alphabets
20 examples per char
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MNIST data set:
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Data preparation

Resize omniglot images to MNIST size (105x105 -> 28x28):

DY

Nearest neighbour interpolation
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Bilinear interpolation
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Convolutional Autoencoder
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Framework: Keras
Loss: Pixel by pixel MSE
Training set: MNIST 46900 examples (67%)
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Method evaluation

Burmese (Myanmar), NN-interpolation
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Method evaluation

Futurama, NN-interpolation
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Method evaluation

Burmese (Myanmar), bilinear-interpolation
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Method evaluation

Futurama, bilinear-interpolation
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Results and conclusion so far

It is important to understand the input space
What data should the network be allowed to process?
How should the data be pre-processed?

Understand what is unique in the images
How different from the training data is ok?

Developin%the safety-cage using “simple” datasets can prove soundness of the method, but must also
be thoroughly evaluated in the final domain.

How is difference estimated in high dimensional space?
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