

Safety analysis and verification/validation of MachIne LEarning-based systems

Cristofer Englund

Research manager Cooperative systems, RISE Viktoria

Adjunct senior lecturer, Halmstad University

RISE Research Institutes of Sweden **RISE ICT, Viktoria**

Machine Learning in vehicles

- Why machine learning is necessary to enable autonomous driving
 - Traditional, rule-based, methods are static
 - Neural networks have the ability to generalize
- Trends that make Machine Learning possible in vehicles
 - Deep learning improves performance compared to traditional neural networks
 - Computational power for training and executing deep learning networks

Machine Learning – Neural Networks

- Neural Networks learns the desired behaviour from historical data
- We want the networks to generalize
 - The network should be able to take decisions on previously unknown data if it is similar to the training data
- How do we avoid taking decisions on data that is not similar to training data?

Why deep technologies?

Polynomial expressed with shared components: advantage of depth may grow exponentially

(Bengio & Delalleau, ALT 2011; Delalleau & Bengio NIPS 2011)

http://www.iro.umontreal.ca/~bengioy/cifar/NCAP2014-summerschool/slides/Yoshua_Bengio_CIFAR_school_12Aug2014.pdf

- Deep structures can make context mapping
- Deep Learning and deep knowledge

Existing knowledge

United Airlines' shares fell 8 percent yesterday, but rebounded by mid-day today.

United Airlines suffered from bad publicity due to mistreatment of passengers.

Ford' shares lost 3% because of the bad publicity caused by recent recalls.

New knowledge

United Airlines' shares fell 8 percent (possibly) because of the bad publicity

Neural Networks for perception

- To define the role of the NN it is important to have clear understanding about:
 - What role should the driver have?
 - What role should the system have?
 - Operational Design Domain ODD the specific situations where a system is designed to operate in, e.g. a motorway or a geographical area.
- Local perception and awareness is key for AD
- Training NN to recognize hazardous situations
- Training NN to anticipate unforeseen situations

ML impacts on ISO 26262

- Five areas
 - Identifying hazards
 - Faults and failure modes
 - The use of training set
 - Level of ML usage
 - Required software techniques
- Hazard: "a potential source of harm caused by malfunctioning behaviour of the item where harm is physically injury or damage to the health of persons"

An Analysis of ISO 26262: Using Machine Learning Safely in Automotive Software. Rick Saly, Rodrigo Queiroz, Kryzsztof Czarnecki. arXiv: 1709.02435v1

ML impacts on ISO 26262

- Identifying hazards
 - Automation takes over more and more control.
 - Taking over becomes increasingly critical.
 - Increased automation can/will create behaviour change in the operator -> reducing their skill level.
 - \rightarrow Include harm potentially caused by complex behaviour interaction between human and vehicle.
- Faults and failure modes
 - Incorrect output for a given input.
 - \rightarrow Current recommendations apply.
- The use of training set
 - Necessary to use ML for perception. A training set is used instead of a specification.
 - Data does not contain all possible scenarios.
 - \rightarrow Design systems that can cope with an error rate.
- Level of ML usage
 - End-to-End systems model all functionality and the result is a complex black box system.
 - \rightarrow Use ML at the component level.
- Required software techniques
 - ISO 26262 requires many specific techniques for software development.
 - Some apply to ML, some may be adapted but some others assume programming.
 - \rightarrow Express requirement in terms of intent and maturity of the techniques rather than their specific details.

What is SMILE II about?

- We accept that DNN are black-boxes and that we need to include them in vehicle perception
- Camera-based perception models
- Investigate pre-training
 - Humans learn from birth what is "dangerous"
 - Can self driving vehicles make use of other contexts?
- Investigate how to handle model updates
- Demonstrate perception use-case

What is SMILE II about?

Safety Cage to monitor the data presented to the network

Image anomaly detection using convolutional autoencoders

Work by: Lars Tornberg, VCC

Data set

MNIST data set:

• 70 000 images (28x28)

Braille	Bengali	Sanskrit
	া 2 সান চল ই	प झाअ षि म ऌ घ
	ঔকিয় অওট ব	ट ठ क ज फ अ व
	जिथ मबा 1 दे डा	इ ए न ज ज थ स
	গ ছিত্ত চা গ মূ	द आ भ ओ य उ त
	৬ত চ ঋঘ উ থ	रिङण्डल्थद
	চি গ ঢ় ল ডি ট মে	कि च इ ब ह श कर
	र र ह व	
Greek	Futurama	Hebrew
4 L B S 2	3 @ 5 2 X to	12 1 2 3
HAKXV	XYXDLL	र र र र र
υθγίσ		<u>רע ד</u> י א ג
ωπησε		CROTU
ΡξζΨ		ן 1

0	0	0	0	0	Ô	0	0	D	٥	0	0	0	0	0	0
1	l	١	١	١	1	1	1	1	1	١	1	1	١	1	1
2	ລ	2	2	ð	J	2	2	ዲ	2	2	2	2	2	2	ン
З	3	3	3	3	3	3	3	3	3	3	З	3	3	3	З
4	4	٤	ч	4	4	Ч	4	#	4	4	4	9	ч	4	4
5	5	5	5	5	S	5	5	5	5	5	5	5	5	5	5
6	G	6	6	6	6	6	6	Ь	6	¢	6	6	6	6	b
¥	7	7	٦	7	7	ч	7	2	7	7	7	7	7	7	7
8	B	8	8	8	8	8	8	8	8	8	8	8	8	8	8
9	૧	9	9	9	ዋ	٩	9	٩	η	٩	9	9	9	9	9

Omniglot data set:

- 1623 images (105x105)
- 50 different alphabets
- 20 examples per char

Data preparation

Resize omniglot images to MNIST size (105x105 -> 28x28):

Nearest neighbour interpolation

Bilinear interpolation

Convolutional Autoencoder

Framework: Keras Loss: Pixel by pixel MSE Training set: MNIST 46900 examples (67%)

Burmese (Myanmar), NN-interpolation

0173456789 ^{\cu}

Futurama, NN-interpolation

Burmese (Myanmar), bilinear-interpolation

0173456789 0173456719

 $ext{Precision} = rac{\iota p}{tp+fp}$ $ext{Recall} = rac{tp}{tp+fn}$

1.0

Futurama, bilinear-interpolation

0123456789 0123456789 173456789

1.0

Results and conclusion so far

- It is important to understand the input space
 - What data should the network be allowed to process?
 - How should the data be pre-processed?
- Understand what is unique in the images
 - How different from the training data is ok?
- Developing the safety-cage using "simple" datasets can prove soundness of the method, but must also be thoroughly evaluated in the final domain.
 - How is difference estimated in high dimensional space?
- Publications
 - Henriksson, J., Borg, M., Englund, C.: Automotive safety and machine learning: Initial results from a study on how to adapt the ISO 26262 safety standard. In: SEFAIAS-2018. (2018)
 - Borg, M., Englund, C., Duran, B.: Traceability and Deep Learning Safety-critical Systems with Traces Ending in Deep Neural Networks. In: In Proc. of the Grand Challenges of Traceability: The Next Ten Years. (2017) 48–49
 - Englund, Cristofer; Borg, Markus; Duran, Boris; Kaijser, Henrik; Lönn, Henrik; Lindström, Konstantin; Zandén, Carl; Levandowski, Christoffer; Simoen, Michaël; Törnquist, Jonas. Deep Learning and Safetycritical Systems: Research, Practice, and Future Needs in Automotive. In review IEEE Transactions on Intelligent Transportation Systems

Safety analysis and verification/validation of MachIne LEarning- based systems

Cristofer Englund

crist of er. engl und @ri.se

RISE Research Institutes of Sweden **RISE ICT, Viktoria**